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Abstract

Using Beck and Cohen’s superstatistics, we introduce in a systematic way a
family of generalized Wishart–Laguerre ensembles of random matrices with
Dyson index β = 1, 2 and 4. The entries of the data matrix are Gaussian random
variables whose variances η fluctuate from one sample to another according
to a certain probability density f (η) and a single deformation parameter γ .
Three superstatistical classes for f (η) are usually considered: χ2-, inverse χ2-
and log-normal distributions. While the first class, already considered by two
of the authors, leads to a power-law decay of the spectral density, we here
introduce and solve exactly a superposition of Wishart–Laguerre ensembles
with inverse χ2-distribution. The corresponding macroscopic spectral density
is given by a γ -deformation of the semi-circle and Marčenko–Pastur laws,
on a non-compact support with exponential tails. After discussing in detail
the validity of Wigner’s surmise in the Wishart–Laguerre class, we introduce
a generalized γ -dependent surmise with stretched-exponential tails, which
well approximates the individual level spacing distribution in the bulk. The
analytical results are in excellent agreement with numerical simulations. To
illustrate our findings we compare the χ2- and inverse χ2-classes to empirical
data from financial covariance matrices.

PACS numbers: 02.10.Yn, 05.40.−a, 02.50.−r

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Random matrix theory (RMT) is known to find applications in many physical systems [1, 2].
Its central assumption is that the Hamiltonian of the system under consideration can be replaced
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by an ensemble of random matrices that are consistent with its global symmetries. The matrix
elements of such a random Hamiltonian are typically independent Gaussian variables with
mean zero and variance one in the real, complex or quaternion domain. These are respectively
labelled by the Dyson index β = 1, 2 and 4, which in turn corresponds to the invariance group
of the ensemble (orthogonal, unitary or symplectic). Another set of ensembles of random
matrices, which is well studied in RMT, is known as Wishart–Laguerre or chiral ensemble
and will be denoted by WL in the following. The WL ensemble contains random matrices
of the form [3] W = X†X, where X is a rectangular matrix of size M × N(M > N), whose
entries are independent Gaussian variables in the simplest case, and X† is the Hermitian
conjugate of X. As such, the WL ensemble contains (positive definite) covariance matrices W

of maximally random data sets. They have since appeared in many different contexts ranging
from mathematical statistics, statistical physics and quantitative finance to gauge theories,
quantum gravity and telecommunications [4].

The Gaussian distribution of matrix elements above can be obtained by extremizing the
Boltzmann–Gibbs–Shannon entropy subject to the constraint of normalization and of fixed
expectation value of Tr(X†X) [5]. This observation has been taken by several authors [6] as a
starting point for generalizing the classical Wigner–Dyson (WD) ensembles, by maximizing
Tsallis’ non-extensive entropy subject to the same constraints. The resulting distributions
of matrix elements are no longer Gaussian but rather follow a power law (for a different
generating mechanism of such ensembles, see [7]). Recently, a similar generalization of
the WL ensembles has been worked out [8], following earlier studies [9] on the covariance
matrices of financial data.

In this context, it is known [10] that the spectral density of covariance matrices built
from empirical data may deviate significantly from their purely random (WL) counterpart: in
order to obtain a better agreement, it is necessary to introduce correlations among the matrix
elements of X, typically allowing the variance of each entry to fluctuate. In [10], this is done by
using a multivariate Student distribution, where the random entries of X are written as a product
of two variables with a Gaussian and an inverse χ2-distribution, respectively. Generically,
this approach spoils the complete solvability of the model and prevents from going beyond
the average spectral density [10]. In order to study other correlations, it is therefore of great
interest to introduce generalizations of WL where the independence of X-entries is dropped,
but the exact solvability is retained. One of the first examples of such models was provided in
[8], where a good fit to the power-law decay of financial covariance spectra was obtained.

It is desirable to place the model [8] within a more general framework, as was done
previously for the WD class [11, 12]. The key observation is to resort to the ideas of
superstatistics (or statistics of a statistics) proposed by Beck and Cohen [13]. Outside
RMT, this formalism has been elaborated and applied successfully to a wide variety of
physical problems, e.g., in [14]. In thermostatics, superstatistics arises as a weighted average
of ordinary Boltzmann statistics due to fluctuations of one or more intensive parameters
(e.g., the inverse temperature). Typically, the distribution of the superstatistical parameter
falls into three ‘universality’ classes: χ2-, inverse χ2- and log-normal distributions (see
section 2.1 for a more detailed discussion). Superstatistical RMT [11] analogously assumes
that the Hamiltonian of the system is locally described by a standard WD ensemble with a
given variance, and when averaging over the whole system the variance is integrated over
with a specific distribution. Consequently, superstatistical RMT is a superposition or integral
transform of the usual Gaussian RMTs.

The same concept of integral transforms of standard RMT has also appeared in other
contexts, e.g. the fixed or restricted trace ensembles [15], also called norm-dependent
ensembles. Very general results can be deduced for them, without specifying the distribution
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[12, 16]. However, no systematic applications of superstatistics and integral transforms to the
WL class are known so far. It is the purpose of this paper to fill this gap.

We are going to introduce first a family of generalized WL ensembles depending on
a single real parameter γ , where the prescriptions of superstatistics are incorporated in a
systematic way, and then solve exactly a representative example where the entries of X are
Gaussian random variables whose variances fluctuate from sample to sample according to an
inverse χ2-distribution. Given the appearance of such a distribution in modelling the volatility
of financial markets [10], it is sensible to compute the tail of the spectral density in our model
and compare it to the findings in [10] and [8]. However, because of WL ensembles being
tailored to times series of data, we expect applications beyond financial covariance matrices
as applied here.

Despite the complicated correlations among the entries, and thanks to the integral
transform mapping we can go to an eigenvalue basis and write the joint probability density
function (jpdf) of eigenvalues as an integral over the corresponding WL one, a feature that was
already exploited in [8] for the χ2-distribution. Being able to perform all integrals analytically,
we have full control over exchanging the large-N limit with our deformation parameter γ . In
the limit γ → ∞, our generalized ensembles are designed to recover the standard WL, and
this fact will constitute an important consistency check in the following. A third class of
models can be obtained by folding with the log-normal distribution, but we will not deal with
this case here, lacking a full analytic solution.

It is worth mentioning that the applicability of this formalism is not limited to the above
three universality classes. In particular, it would be very interesting to investigate whether the
choice of the best superstatistical distribution could be inferred from the data set, instead of
being somehow ‘postulated’ a priori. This would be reminiscent of the Bayesian approach to
superstatistics [17], this time in the more complicated RMT setting.

In section 2, we briefly review the prescriptions of superstatistical RMT, together with
the three universality classes in section 2.1. Then we give a step-by-step derivation of
our superstatistical WL ensemble in section 2.2. In section 3, we define the spectral
properties to be computed in our model and discuss their universality. We then investigate
the large matrix size limit of the spectral density in section 4, where we distinguish between
square and rectangular matrices of size N = cM in the two subsections. In section 5,
we first present a detailed discussion on the applicability of the standard Wigner surmise
for the level spacing in the WL class, and then we derive a new, generalized γ -dependent
surmise which is appropriate to describe with excellent approximation the individual level
spacing in the bulk of our superstatistical model. Numerical checks on the analytical results
are provided throughout the text, and the algorithm used is described in appendix A. In
section 6, we compare two superstatistical distributions to empirical data from financial
covariance matrices, before offering concluding remarks in section 7.

2. Superstatistical Wishart–Laguerre ensembles

The probability density of the data-matrix entries in WL ensembles is given by

PWL(η; X) = 1

ZWL(η)
exp[−ηβ Tr(X†X)], (1)

where η is proportional to the inverse variance of matrix elements.
The normalization is given by the partition function:

ZWL(η) =
∫

dX exp[−ηβ Tr(X†X)] = 1

βNM

(
π

ηβ

)βMN//2

. (2)
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As mentioned above, X is a matrix of size M × N with real, complex or quaternion elements
for the values β = 1, 2 or 4, respectively. We parametrize N = cM for later convenience,
where c � 1 distinguishes two different large-N limits. The integration measure dX is
defined by integrating over all independent matrix elements of X with a flat measure. The
statistical information about the positive definite eigenvalues of the Wishart matrix W = X†X
or equivalently the singular values of the matrix X can be obtained integrating out all the
undesired variables from the distribution of the matrix elements, using its orthogonal, unitary
or symplectic invariance for β = 1, 2 and 4, respectively.

We now define a superstatistical family of WL ensembles. The key ingredients are the
following:

(i) A real deformation parameter γ > 0, which roughly quantifies how far the new model
lies from the traditional, unperturbed WL ensemble. In the limit γ → ∞, we expect to
recover WL exactly.

(ii) A normalized probability density f (η), such that

1 =
∫ ∞

0
dη f (η). (3)

It is understood that f (η) depends on γ as well, but we will not show this dependence
explicitly in order to keep the notation light.

The probability distribution of matrix elements for the generalized model is then obtained
as follows:

P(X) =
∫ ∞

0
dη f (η)PWL (�(γ )η; X) = 〈PWL(�(γ )η; X)〉f , (4)

where 〈·〉f means average over the distribution f (η), and �(γ ) is a simple function of the
deformation parameter (see section 2.2 for details). The choice of distribution f (η) is
determined by the system under consideration. In the absence of fluctuations of the variance,
f (η) = δ(η − η0) and we reobtain the standard WL ensemble. Typically, the distribution
f (η) depends explicitly on the parameter γ , in such a way that for γ → ∞ a delta-function
limit is obtained and thus the WL results (before or after taking N large) are duly recovered.

While the distribution defined in equation (4) is formally normalized, when exchanging
the integration

∫
dX with

∫
dη, the prescription given so far is not complete. The choice of a

distribution f (η) and, in particular, of the N-dependence of its parameter(s) has to be such that
(a) the integral over P(X) is convergent and that (b) an N-independent limit for the spectral
density can be found after a proper rescaling of variables. We will come back to this issue
below.

2.1. The three superstatistical classes

Beck et al [18] have argued that experimental data can be described by one of three
superstatistical universal classes, namely the χ2-, inverse χ2- or log-normal distribution.
Below we briefly discuss each class and the properties of its corresponding distribution, before
turning to the detailed solution for the inverse χ2-class in the following sections.

(1) χ2-distribution. The χ2-distribution with degree ν and average η0 is given by

f1(η) = 1



(

ν
2

) ( ν

2η0

) 1
2 ν

η
1
2 ν−1 exp

[
−νη

1

2η0

]
, (5)

where we define η0 = ∫ ∞
0 ηf (η) dη ≡ 〈η〉. This distribution is appropriate if the variable

η can be represented as a sum of squares of ν Gaussian random variables.
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The superstatistical distribution arising from (5) is Tsallis’ statistics with power law
tails [19] and is believed to be relevant, e.g., for cosmic ray statistics [20].

(2) Inverse χ2-distribution. This distribution is found if η−1, rather than η, is the sum of
several squared Gaussian random variables. Its distribution f2(η) is given by

f2(η) = η0



(

ν
2

) (νη0

2

) 1
2 ν 1

η
1
2 ν+2

exp

[
−νη0

1

2η

]
, (6)

with degree ν and average η0.
This class is appropriate for systems exhibiting velocity distribution with exponential

tails [21] and was shown to describe the spectral fluctuations of billiards with mixed
regular-chaotic dynamics better than the other two distributions [22].

(3) Log-normal distribution. In the third class, instead of being the sum of contributions,
the random variable η may be generated by a multiplicative random process. Then its
logarithm log(η) = ∑ν

i=1 log(xi) is a sum of ν Gaussian random variables xi . Thus η is
log-normally distributed:

f3(η) = 1√
2πvη

exp

[
−[log(η/μ)]2 1

2v2

]
. (7)

It has an average 〈η〉 = μ
√

w and variance μ2w(w − 1), where w = exp(v2).
This class has been found relevant for Lagrangian and Eulerian turbulence [14, 23].
Because apparently this class does not lead to closed analytical results for the

distribution of matrix elements P3(X) or its correlation functions we do not use it as
an example in this paper.

2.2. Building the superstatistical ensembles

Since the prescription (4) is not completely straightforward, we provide here a step-by-step
construction of the superstatistical probability density P(X). We focus here on the inverse
χ2-distribution (6) as a new example.

(i) We start with the usual WL probability density for the entries, equation (1):

P(X) � exp[−ηβ Tr(X†X)]. (8)

Henceforth we omit the normalization constants.
(ii) Next, we convolve the WL weight with the inverse χ2-distribution (6):

P(X) � 1

η
1
2 ν+2

exp

[
−νη0

1

2η

]
exp[−ηβ Tr(X†X)]. (9)

(iii) The ν parameter becomes the deformation parameter of the model as γ = ν/2. For
a clearer notation, we now make the further replacement η = νη0ξ/2 and eventually
integrate over the possible values for ξ :

P(X) �
∫ ∞

0
dξ

1

ξγ +2
exp

(
−1

ξ

)
exp[−ξγβ Tr(X†X)]. (10)

Note that the average η0 is no longer needed explicitly and has been absorbed in the other
parameters. In (10), the deformation parameter γ appears in both the superstatistical
weight function and inside the WL Gaussian weight (here �(γ ) = γ , while in the [8]
model �(γ ) = 1/γ ).
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(iv) Although formally exact, equation (10) does not lead to a N-independent spectral density,
as can be quickly realized with a modest amount of foresight (see (21) and (22)). The
last step is thus to amend slightly (10), including a suitable extra factor for normalization
ξ−(β/2)NM :

P2(X) ≡
∫ ∞

0
dξ

1

ξγ +2−(β/2)MN
exp

(
−1

ξ

)
exp[−ξγβ Tr(X†X)]. (11)

(v) Eventually, the integral in (11) can be evaluated and gives the probability density for the
entries of our superstatistical WL model as

P2(X) ∝ (Tr(X†X))
1
2 (γ +1−βNM/2)Kγ +1−βNM/2(2

√
βγ Tr(X†X)). (12)

Here Kγ (z) is the modified K-Bessel function of second kind.

This distribution is the main subject of this paper. It is convergent for all values of γ > 0,
and we will show later that our choice of the normalization ξ−(β/2)NM effectively leads to an
N-independent limit for the average spectral density at fixed and finite γ .

We can analytically recover the standard WL ensembles for γ → ∞ (at fixed and finite
N,M) using the following non-standard asymptotic of the Bessel-K function4:

z
γ

2 Kγ (2
√

γ z) ∼
√

π

2
γ

1
2 (γ−1) e−γ exp[−z]. (13)

While we did not find equation (13) in tables, it follows easily from the following integral
representation 8.432.6 [24], after using a saddle-point approximation:

Kγ (x) = xγ

2γ +1

∫ ∞

0
dt t−γ−1 exp

[
−t − x2

4t

]
, x2 > 0. (14)

To derive equation (13) we have included the fluctuations around the saddle point and used the
standard notation f ∼ g to mean that f/g → 1. The γ -dependent prefactor can be cancelled
by a proper normalization.

It is important to stress that the choice of the normalization ξ−(β/2)MN does not affect
the correct γ → ∞ asymptotics in any way, while being the only sensible prescription when
taking the large N,M limit at fixed γ for the average spectral density (see section 4).

It is also worth mentioning that, following the same steps as above, one can incorporate the
other two superstatistical distributions. For example, for the χ2-distribution, one is naturally
led to

P1(X) ∝
∫ ∞

0
dξ ξγ−1+ 1

2 βNM e−ξ exp

[
−ξβ

γ
Tr(X†X)

]

∝
(

1 +
β

γ
Tr(X†X)

)−γ + 1
2 βNM

. (15)

The power-law decay of the matrix elements translates into all correlation functions [8],
depending on a single rescaled parameter, α = γ − β

2 NM − 1 > 0, which is kept fixed in
the large-N limit. The reduction back to standard WL can be made both before and after the
large-N limit using

lim
γ→∞(1 + γ −1z)−γ = e−z. (16)

For a more detailed discussion we refer to [8].

4 Note that the argument
√

z of the Bessel-K function becomes quadratic in the exponent.
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3. Generalization of WL with exponential tails

After introducing the probability distribution of matrix elements in our generalized inverse
χ2-WL equation (11) we go to an eigenvalue basis in this section and define all correlation
functions.

The corresponding joint probability distribution function (jpdf) of positive definite
eigenvalues λ1, . . . , λN of the matrix W = X†X reads

Pγ (λ1, . . . , λN) ∝
∫ ∞

0
dξ

1

ξγ +2− β

2 NM
exp

[
−1

ξ

]
PWL(λ1, . . . , λN ; ξ)

∝
N∏

i<j

|λj − λi |β
N∏

k=1

λ
β

2 (M−N+1)−1
k

(
N∑

i=1

λi

) 1
2 (γ +1−βNM/2)

Kγ +1−βNM/2

⎛
⎝2

√√√√βγ

N∑
j=1

λj

⎞
⎠ .

(17)

Here we have used the jpdf PWL of the standard WL ensemble, which is given by

PWL(λ1, . . . , λN ; ξ) ∝
N∏

i<j

|λj − λi |β
N∏

k=1

λ
β

2 (M−N+1)−1
k e−ξγβ

∑N
l=1 λl . (18)

For convergence γ has to be positive. Both jpdf’s still have to be normalized by the respective
partition function Zγ and ZWL(ξ), obtained by integrating over all eigenvalues.

The k-point correlation functions defined by integrating out N − k arguments of the jpdf
are given as

Rγ,k(λ1, . . . , λk) ≡ N !

(N − k)!

1

Zγ

∫ ∞

0
dλk+1 · · ·

∫ ∞

0
dλNPγ (λ1, . . . , λN). (19)

Because of the linear relationship between the jpdf of our ensemble and WL, equation (17),
we can express the k-point functions of the former through the latter:

Rγ,k(λ1, . . . , λk) =
∫ ∞

0
dξ

1

ξγ +2− β

2 NM
e− 1

ξ
ZWL(ξ)

Zγ

RWL,k(λ1, . . . , λk; ξ), (20)

where RWL,k(λ1, . . . , λk; ξ) is the corresponding k-point function for the WL ensemble defined
in the same fashion. The ξ -dependent ratio of the two partition functions, which are also
linearly related through

Zγ =
∫ ∞

0
dξ

1

ξγ +2− β

2 NM
e− 1

ξ ZWL(ξ), (21)

easily follows from equation (2):

ZWL(ξ)

Zγ

= ξ− β

2 NM


(γ + 1)
. (22)

Comparing equations (22) and (20), it is already apparent that the choice of the normalization
in equation (11) was, in fact, necessary to neutralize exactly the N- and M-dependence coming
from the partition functions. In all our formulae, the limit γ → ∞ at finite N and M leads
back to WL, using equation (13).

3.1. Universality

We close this section by discussing the universality and robustness of generalizations of WL.
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First, all k-point correlation functions of the WL ensembles are explicitly known for
finite and infinite N, in terms of Laguerre polynomials and their asymptotics. Thanks to the
integral mapping equation (20), the superstatistical models are exactly solvable as well (see,
e.g., [8, 12]). Also because of this, we could allow for a more general WL ensemble with
a polynomial potential V instead of the Gaussian Tr(X†X) → Tr V (X†X), in order to probe
the universality of our results under deformations. These non-Gaussian ensembles can again
be solved using the technique of (skew-) orthogonal polynomials for any finite N and M, and
again the complete solvability of the superstatistical generalization is guaranteed by the very
same integral relation (20).

It is known that in the microscopic large-N limit the asymptotic of the orthogonal
polynomials for these non-Gaussian models is universal [25, 26] (for rigorous mathematical
proofs, see [27] and references therein). This implies that the microscopic correlations in our
model remain unchanged after the integral transform. As an example for such a microscopic
quantity we deal with the level spacing distribution in section 5. For a detailed discussion of
the universal microscopic spectral correlations with a χ2-distribution we refer to [8], including
references.

About the macroscopic large-N limit, the (generalized) semi-circle and Marčenko–Pastur
(MP) densities are known to be less robust. They are altered by deformations via a polynomial
potential V but still remain computable; see, e.g., the discussion in [15] and references
therein. However, a different kind of deformation is known that leaves the semi-circle or
Marčenko–Pastur density unchanged: the so-called Wigner ensembles (see [28] for a review).
The Gaussian random variables of the WL ensembles are replaced by independent random
variables with zero mean and finite second moment. While this generalization destroys both the
invariance as well as the integrability of higher correlation functions, its large-N macroscopic
density is the same as in WL, and thus also our integral transform of WL, after taking the
large-N limit.

4. The macroscopic spectral density

In this section we focus on the simplest observable, the spectral density Rγ,k=1(λ) obtained
by integrating out all eigenvalues but one5.

When taking the large-N,M limit, we keep the combination c = N/M � 1 fixed. This
leads to two different behaviours for the WL spectral density: the semi-circle (in squared
variables) for c = 1 and the MP density for c < 1; see equations (24) and (38). Therefore, we
expect two different limits for our generalized ensembles as well, and the generalizations of
these two well-known WL results will be dealt with in two separate subsections below.

Although the average spectral density for WL (and hence for our model as well through
(20)) is known explicitly for any finite N,M in terms of Laguerre polynomials (see, e.g.,
[2, 8]), the generalized spectral density for large N can be obtained following a much simpler
route: we replace the finite-N WL quantity under the integral by its large-N result. The
correctness of this approach has already been shown in [8]. As a further check, we can
eventually take γ → ∞ to recover the semi-circle or MP density.

4.1. Generalized semi-circle law for c = 1

In the case c = 1, the large-N asymptotic expression for the density of eigenvalues of WL
ensembles with distribution exp[−ηβ Tr X†X] is given by

5 Following the general definition (19), R(λ) denotes the spectral density normalized to N.

8
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lim
N
1

RWL,1(λ) = η

π

√
2N

ηλ
− 1 with λ ∈ (0, 2N/η], (23)

and 0 otherwise. An N-independent macroscopic density with average one is obtained by
rescaling λ → x〈λ〉WL with its mean 〈λ〉WL = 〈 1

N
Tr X†X〉WL = M

2η
, calculated with respect

to the above distribution. We obtain

ρWL(x) ≡ lim
N→∞

1

N
〈λ〉RWL,1(x〈λ〉) = 1

2π

√
4

x
− 1, with x ∈ (0, 4]. (24)

It diverges as 1/
√

x at the origin and vanishes as a square root at the upper edge of support.
Equation (24) corresponds to a semi-circle after mapping eigenvalues from R+ to R, and we
will comment more on that below (see figure 1).

Following the same procedure as above for the inverse χ2 ensemble, we first need to
determine the average eigenvalue in our ensemble (see, e.g., [8] appendix A):

〈λ〉γ ≡ 1

Zγ

∫ ∞

0
dξ

1

ξγ +2− β

2 NM
e− 1

ξ ZWL(ξ)〈λ(ξ)〉 = M(γ + 1)

2γ
, (25)

using equation (22) and the mean in WL above.
Next we define the generalized macroscopic N-independent density as

ργ (x) ≡ lim
N→∞

1

N
〈λ〉γ Rγ (x〈λ〉γ )

= lim
N→∞

1

N
〈λ〉γ

∫
I

dξ
1

ξγ +2− β

2 NM
e− 1

ξ
Z(ξ)

Zγ

ξγ

π

√
2N

ξγ x〈λ〉γ − 1. (26)

Here we have simply inserted the large-N WL density equation (23) with the parameter η = ξγ

into the integrand equation (20). Consequently, the interval of integration is truncated and
given by I = (

0, 4
x(γ +1)

]
. Thanks to the correct choice of normalization in equation (11), the

N-dependence completely drops out and for any fixed γ > 0 the new spectral density admits
the following integral representation, after changing variables t = 4

ξx(γ +1)
− 1:

ργ (x) = (γ + 1)γ +1

2π
(γ + 1)

(x

4

)γ
∫ ∞

0
dt exp

[
− (γ + 1)

4
x(t + 1)

]
(t + 1)γ−1

√
t . (27)

This is our first main result of this section. This density as well as its first moment is correctly
normalized to 1:∫ ∞

0
ργ (x) dx = 1 =

∫ ∞

0
xργ (x) dx. (28)

As a consistency check, we can now take the limit γ → ∞. The integral becomes
amenable to a saddle-point approximation, and taking into account the fluctuations around the
saddle point we reproduce exactly equation (24) as we should. Equation (27) is plotted in
figure 1 (left) for various values of γ . Our generalized density has support on the full R+, in
contrast to the compact support of the WL semi-circle.

In order to analytically derive the asymptotic behaviour of our generalized semi-circle
equation (27) at the origin x → 0 and at infinity x → ∞ it is more convenient to express the
integral through special functions. Using equation (3.383.5) [24] we can express the density
equation (27) as

ργ (x) = (γ + 1)γ +1

4
√

π
(γ + 1)
exp

[
−(γ + 1)

x

4

] (x

4

)γ

�

(
3

2
, γ +

3

2
; (γ + 1)

x

4

)
, (29)
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Figure 1. The generalized semi-circle (29) before (left) and after (right) the mapping (33) to R for
different values of γ = 0.5, 2, 10 (green, blue, violet, respectively). For comparison, the standard
WL semi-circle is plotted as well (black).

where �(a, b; z) is the Tricomi confluent hypergeometric function (sometimes denoted
U(a, b; z)). The asymptotics for x → 0 is easy to obtain as

ργ (x) ∼ (γ + 1)1/2
(γ + 1/2)

π
(γ + 1)

1√
x

. (30)

A few comments are in order. First, the γ -dependent prefactor in (30) reproduces the
correct WL asymptotic behaviour from (24) ρWL(x) ∼ 1

π
√

x
for x → 0 when γ → ∞. Second,

the WL inverse square root divergence at the origin is not modified in the superstatistical
generalizations, a feature that is shared by the χ2-deformed WL [8].

Next we turn to the large-x asymptotics. Using only the leading-order term [30]

�(a, b; z) ∼ z−a for |z| → ∞, (31)

we obtain immediately the following result from equation (29):

ργ (x) ∼ (γ + 1)γ−1/2

4
√

π
(γ + 1)
exp

[
−(γ + 1)

x

4

](
x

4

)γ− 3
2

. (32)

We illustrate the behaviour of the generalized semi-circle density equation (29) in figure 1.
In order to better resolve the behaviour at the origin, we map our spectral density from the
positive real axis to the full real axis by defining

ϑγ (y) ≡ |y|ργ (y2), (33)

that is to a normalized density on R,
∫ ∞
−∞ dy ϑγ (y) = 1. Furthermore, this map leads the

second moment to be normalized,
∫ ∞
−∞ dy y2ϑγ (y) = 1. In particular, we obtain for WL a

semi-circle from equation (24):

ϑWL(y) = 1

2π

√
4 − y2 on [−2, 2]. (34)

In this squared-variables picture, a further, interesting feature of the generalized spectral
density equation (27) appears when considering the opposing limit γ → 0. There, the spectral
density admits the following simplified form:

ϑγ→0(x) = |x|

(− 1

2 , x2

4

)
4
√

π
(35)

(where 
(x, y) is an incomplete Gamma function), which displays a cusp at x = 0. This
feature often appears in spectral densities of complex networks [31].

10
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As a final remark in the standard WL (or WD) class the density also has an exponential
tail at finite N, exp[−Nx2]. However, in the macroscopic large-N limit it disappears while in
our deformed model such a tail persists.

4.2. Generalized Marčenko–Pastur law for c < 1

In this subsection, we deal with the limit in which the matrix X remains rectangular, that is
both M and N become large with N/M = c < 1 fixed. We follow the same steps as in the
previous subsection, first recalling the results for WL that need to be incorporated into our
model. It is known that in the standard WL ensemble (1), the average density of eigenvalues
is given for large N as follows:

lim
N
1

RWL,1(λ) = η

πλ

√(
λ − N

2η
X−

)(
N

2η
X+ − λ

)
, with λ ∈

[
N

2n
X−,

N

2n
X+

]
.

(36)

Here we have defined the following bounds for later use:

X± ≡ (
c− 1

2 ± 1
)2

, with 0 < c < 1. (37)

In the limit c → 1, we recover from equation (36) the semi-circle equation (23) from the last
section. An N-independent density with mean one is again obtained by rescaling with the
mean eigenvalue position 〈λ〉WL = M

2η
, and normalizing

ρMP(x) ≡ lim
N→∞

1

N
〈λ〉WLRWL,1(x〈λ〉WL) = 1

2πcx

√
(x − cX−)(cX+ − x),

with x ∈ [cX−, cX+]. (38)

This is called Marčenko–Pastur law [29]. Taking c → 1 we again recover the N-independent
semi-circle equation (24).

Turning to our generalized model we now insert the large-N result (36) into equation (20)
and rescale with the mean (25):

ργ (x) ≡ lim
N,M→∞

1

N
〈λ〉γ Rγ (x〈λ〉γ )

= lim
N,M→∞

〈λ〉γ
N

∫
I

dξ
e− 1

ξ Z(ξ)ξγ

ξγ +2− β

2 NMZγ πx〈λ〉γ

×
√(

x〈λ〉γ − N

2ξγ
X−

)(
N

2ξγ
X+ − x〈λ〉γ

)
, (39)

where I ≡
[

c
x(γ +1)

X−, c
x(γ +1)

X+

]
is the truncated integration range. Inserting the ratio

equation (22) and substituting ξ → t = ξx(γ + 1)/c we arrive at the following

ργ (x) = xγ

2π
(γ + 1)

(
γ + 1

c

)γ +1 ∫ X+

X−

dt

tγ +2
exp

[
−x(γ + 1)

tc

]√
(t − X−)(X+ − t), (40)

the second main result of this section. It is valid for any fixed γ > 0 with 0 < c < 1. As a
check we can take the limit γ → ∞, and a saddle-point evaluation including the fluctuations
around the point t0 = x

c
leads back to the MP density equation (38).

Next, we turn to the asymptotic analysis for x → 0 and x → ∞. For small values of x
we simply obtain

ργ (x) ∼ Dγ xγ , (41)

11
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Figure 2. The generalized MP density (40) for c = 0.4 and different values of γ = 0.5, 2, 10
(green, blue, violet, respectively). For comparison, the standard MP distribution (38) is plotted as
well (black).

where the constant Dγ easily follows from equation (40). For x → ∞, we obtain

ργ (x) ∼
√

X+ − X−
4
√

π
(γ + 1)(X+)γ−1

(
γ + 1

c

)γ−1/2

xγ−3/2 e− (γ +1)

cX+
x. (42)

As a check, we can recover the correct asymptotical behaviour (32) when c → 1 (in this
case X− → 0 and X+ → 4). Note that the decay for large arguments is the same as for
the generalized semi-circle equation (32), in terms of variables x/(cX+). An example for
equation (40) is shown in figure 2. Such exponentially decaying correlations occur in
exponentially growing complex networks, apart from more frequent power-law decays [31].

In addition to our analytical checks comparing to WL and c = 1 we have also performed
numerical simulations, generating matrices in our generalized class with the algorithm given
in the appendix. In figure 3, we compare the numerical results for the spectral density at finite
N,M with the theoretical prediction (valid at infinite N) equation (40). We find an excellent
agreement already for moderate N and M (N = 10,M = 40).

5. Level spacing from a Wigner surmise

The exact computation of the level spacing distribution for finite matrix size N (and in the
microscopic large-N limit in the bulk) is mathematically quite nontrivial, even in the simplest
case of the WD ensembles; see, e.g., [2].

Therefore, long ago Wigner came up with the idea to compute the exact spacing
distribution in the WD class for the simple 2 × 2 case, obtaining

P
(β)

WD (s) = aβsβ exp[−bβs2]. (43)

The β-dependent constants aβ, bβ easily follow by fixing the norm and first moment to unity
(see, e.g., in [1]). Below we will mostly need β = 1 with a1 = π/2 and b1 = π/4. The
formula (43) turns out to be an excellent approximation of the true result for moderately large
N (see, e.g., figure 1.5 in [2]) and we aim at a similar approximate representation for the
spacing distributions in superstatistical ensembles.

However, before undertaking this more complicated task, we ask a simpler question:
does a Wigner surmise using N = 2 work well in the unperturbed WL ensemble? We have

12
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Figure 3. Numerical check for β = 1: Histogram of eigenvalues for N = 10, M = 40 and
γ = 1, 10 (blue and magenta, respectively), together with the theoretical result (40) for N = ∞
(black and red solid lines). The average is obtained over R = 50 000 samples.

not seen this issue discussed in depth in the literature (see, however, [32] section V and
references therein) and we feel that it is appropriate to spend a few words on it in the following
section.

5.1. A Wigner surmise in WL?

Starting from equation (18) for N = 2 with weight exp[−nβλ] (n = 1/2 for standard normal
entries), we can compute the exact spacing distribution Pν̄ (s) in WL by integrating over both
eigenvalues with the constraint δ(λ2 − λ1 − s). Since this was already done in [8] we can just
quote the result:

P(β)
ν̄ (s) = Csβ+ν̄+1/2K1/2+ν̄ (nβs), (44)

where Kμ(x) is a modified Bessel function, ν̄ ≡ β

2 (M − N + 1) − 1 = β

2 (M − 1) − 1 and the
constant C is given by

C =
(

2−1/2+β+ν̄ (nβ)−3/2−β−ν̄


(
1 + β

2

)



(
1 + ν̄ +

β

2

))−1

(45)

to ensure a normalization to unity. The first moment can be normalized by computing

d ≡
∫ ∞

0
ds sP(β)

ν̄ (s), (46)

and then defining

P̂(β)
ν̄ (s) ≡ dP(β)

ν̄ (sd). (47)

The result (47) is obviously different from equation (43), even for M = N = 2. Can
equation (47) be a better approximation than equation (43) for the true WL spacing at N finite
but large?

In order to compare, let us pick N = M and β = 1 or 2 implying ν̄ = − 1
2 or 0, respectively.

The resulting Bessel-K function simplifies only for half-integer index, K1/2(x) = √
π/2x e−x,

and we obtain

13
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Figure 4. Numerical check of the WL and WD surmise for β = 1 and N = M: N = 2 versus
N = 10(13), for various locations in the bulk: k = 5, 7, 8.

P(β=1)

ν̄=− 1
2
(s) ∼ sK0(s), (48)

P(β=2)

ν̄=0 (s) ∼ s2 exp[−2s]. (49)

After normalizing the first moment, neither case matches with equation (43) and for N �= M

(or β = 4) the difference is even more pronounced.
In order to check which spacing distribution is a better approximation for larger N

instances, we performed numerical simulations using the Dumitriu–Edelman tridiagonal
algorithm [33] for the case β = 1 and N = M , with the result shown in figure 4. Before
commenting on this we mention in passing our procedure. Usually, the numerical quantity
to be compared to the surmise is the so-called nearest-neighbour spacing distribution, i.e.
the normalized histogram of all the spacings among consecutive eigenvalues in the bulk after
unfolding. This procedure is often time consuming and special care is needed to avoid spurious
effects in the analysis (see [32, 34] and references therein for a detailed discussion on unfolding
procedures).

We can thus resort to the following, equivalent method to extract the individual spacing
at a given location k in the spectrum (see [35]) as

sk ≡ λk − λk−1

〈λk − λk−1〉 . (50)

The average 〈·〉 is taken over many samples and obviously 〈sk〉 = 1. For a given N we have
picked different values of k to check that our results do not depend on the position in the
bulk. While the numerical histogram for N = 2 follows the exact result for the spacing from
equation (48), for increasing N it quickly converges towards the WD surmise (43). We have
checked that this holds when choosing N �= M as well.

What is the explanation? The reason lies in the well-known fact that in the bulk both
in the WD and WL classes the correlations are governed by the Sine kernel (for a rigorous
proof, see [27]). The exact spacing distribution can then be expressed in terms of Fredholm
eigenvalues of this kernel (see, e.g., [2]), which happens to be well approximated by the WD
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surmise. This is why the WD surmise applies to both ensembles. In contrast, the N = 2 WL
surmise is not a good approximation, and so the surmise does not work here at all. In the
following subsection, we seek for a generalized Wigner surmise holding in the bulk of our
superstatistical model.

5.2. Level spacing for our generalized model

How should an approximate spacing distribution for the generalized WL model with an inverse
χ2-distribution be constructed? Because of the failure of an N = 2 surmise in WL (as we
just explained), we should not expect that inserting it into our integral transform will work in
the superstatistical case. Instead, we follow a more heuristic approach confirmed by various
numerical checks.

Rather than following the procedure described in section 3.1 we directly start from an
integral transform of equation (43) but with a ξ -dependent variance6:

P
(β)

WD(s; ξ) = 2ξβ+1

(
β

2

) β+1
2




(
β + 1

2

)−1

sβ exp[−βξ 2s2/2]. (51)

Equation (51) is normalized to one (the first moment will be normalized below). Because of∫
dξ f (ξ) = 1 the following folded surmise for our generalized WL is also normalized:

P (β)
γ (s) ≡

∫ ∞

0
dξ ξ−γ−2 e− 1

ξ P
(β)

WD(s; ξ) = Cγ sβ

∫ ∞

0
dξ ξ−γ−1+β exp

[
−1

ξ
− 1

2
βξ 2s2

]
, (52)

with

Cγ = 2

(
β

2

) β+1
2


(γ + 1)−1


(
β + 1

2

)−1

. (53)

To normalize the first moment we compute

dγ ≡
∫ ∞

0
ds sP (β)

γ (s) = (γ + 1)

(

β

2 + 1
)

(
β

2

) 1
2 


(
β+1

2

) (54)

and obtain the approximate spacing distribution in our generalized WL with an inverse χ2-
distribution:

P̂ (β)
γ (s) ≡ dγ P (β)

γ (sdγ ). (55)

Equation (55) is the main result of this subsection. Given the known universality of
(approximate) equation (43), our new spacing distribution will also be universal under a
large class of deformations as discussed in section 3.1. The integral can be evaluated in terms
of hypergeometric functions, but we prefer to keep the integral form for simplicity. We have
checked explicitly that in the limit γ → ∞ we correctly reproduce equation (43) valid for
WL (N 
 2).

Equation (55) is plotted for all three values of β = 1, 2, 4 and various γ in figure 5,
including the limiting WD distribution (43).

Our new surmise (55) has the following asymptotic behaviour. The level repulsion at
short distances, s → 0, is given by

P̂ (β)
γ (s) ∼ κ1s

min(β,γ ). (56)

At large distances s → ∞ however we get a new behaviour in terms of a stretched
exponential,

6 The quadratic rather than lines power in ξ in the exponent can be motivated by a change of variables in

equation (18) e−ξλ → e−ξ2λ2
from the WL to the Gaussian WD weight.
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Figure 5. Level spacing distribution (55) at β = 1, 2, 4 (clockwise from top left) and different
values of γ = 1, 10, 50 (red, blue, violet, respectively). We have also included the WD surmise
(43) in green for comparison.

P̂ (β)
γ (s) ∼ κ2s

1
3 (β+2γ−1) exp

[−αγ s
2
3
]
, (57)

which can be obtained after changing variables and making a saddle-point approximation(
αγ = 3

2

(
βd2

γ

)1/3)
. In both formulae, we have omitted the exact form of the γ -dependent

prefactors κ1,2.
To test our new surmise, we have performed numerical simulations of the individual

spacing distribution in the bulk for the most relevant case β = 1 and various values of
γ,N,M and k (the location within the spectrum). Our findings are summarized in figure 6,
displaying an excellent agreement between the numerical histogram and our surmise.

In figure 6 (top), we keep γ fixed to the value γ = 7 and vary N,M and the location k
within the spectrum. The histogram of the individual kth spacing reveals the independence of
the spacing on the location k and on N or M (sufficiently greater than 2). In figure 6 (bottom),
we keep N,M fixed to the values (10, 15), respectively. Increasing γ (γ = 1, 7, 90) we can
nicely see the convergence of both the numerical histogram and theoretical curves towards the
WD surmise (43).

6. Applications and discussion

Before comparing to actual data, let us put our results into the context of other models and
highlight their features.

From a RMT point of view, the first classification issue is whether or not the considered
ensemble is invariant. Preserving invariance leads to a complete solvability for all spectral
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Figure 6. Comparison to numerical simulations; top: for fixed γ = 7, a comparison between
equation (55) and numerically generated spacings for various combinations of N, M and locations
k within the bulk; bottom: for fixed N = 10,M = 15 equations (55), (43) and numerically
generated spacings for various values of γ and locations k.

correlators in our approach as well as in [8]. On the other hand, non-invariant models as in
[9, 10, 36] permit generically to compute only the macroscopic density, either implicitly or
explicitly. A second issue is that of RMT universality classes, and we argued in section 3.1
that our macroscopic density is universal in a weak sense under (non-invariant) deformations
using independent random variables.

A third and important issue is to classify how the spectral density decays for large
arguments, even though this may be difficult to appreciate from a small set of data. We have
exemplified spectral densities with a power law and exponential decay using a χ2- and an
inverse χ2-distribution, respectively.

About the first issue above, we mention that the non-invariant ensemble [10] using a
multivariate student distribution—a product of Gaussian and inverse χ2-distributed random
variables—leads to a density with power-law decay. Another example is the deformed
Gaussian orthogonal ensemble (GOE) [36] having an exponential tail as in our more general
equation (32), for the special case of γ = 2 (and c = 1). This model is non-invariant as well
and can be derived from another entropy extremization procedure [37].
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Figure 7. A comparison to two spectral densities from financial covariance matrices: top S&P500
price fluctuations of N = 406 assets of M = 1309 days between 1991–1996 [40] (see also [38]
figure 1.), and bottom daily price exchanges of the Johannesburg Stock Exchange from January
1993 to December 2002 [39]. In both cases a few higher eigenvalues are omitted. The smooth
curves are the spectral densities for the given c < 1 from a χ2-distribution (green) [8] and an
inverse χ2-distribution (red) (40), and for comparison, the standard MP distribution (38) (black).

The most natural setting to apply WL or its generalizations is in time series analysis.
In figure 7, we compare to eigenvalues from financial covariance matrices for two different
sets of data [38, 39]7, exploiting superstatistical models with χ2- and inverse χ2-distributions
(displaying power law and exponential decay, respectively). While in the top plot the former
gives a better fit, in the lower plot our new equation (40) for the inverse χ2-distribution gives at
least a comparable if not better fit to the data. We also compare to the standard MP distribution
(38), which appears to give clearly a less good fit. Because in financial data there is no easy
underlying physical principle for identifying extensive variables and thus the distribution class
to be applied, our comparison must be heuristic, deciding case by case which distribution
gives the best fit.

7 We kindly thank the authors for permission to use the data from their papers.
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A similar approach has been taken in a comparison with partly chaotic billiards [22].
Here the microscopic spacing distribution from various generalized WD classes is compared
to the data, and the inverse χ2-distribution gives the best fit. Other examples where the inverse
χ2-distribution has been recently identified is in turbulent flows [41], although not in a RMT
setting.

A very recent example of an application of a superstatistical RMT to complex networks
was given in [37]. Here the deformed GOE model [36] within the class of exponentially
decaying densities is compared to local statistics of the adjacency matrix. Due to its non-
invariance the microscopic RMT predictions there are obtained from simulations. It would be
very interesting to calculate these correlation functions analytically in the framework of our
model with a more general exponential decay, but this is going beyond the scope of this paper.

7. Conclusions

Using the recently proposed methods of superstatistics, we provided a systematic framework
for generalizing the Wishart–Laguerre ensembles of random covariance matrices, retaining
the exact solvability of the original model. This is achieved by allowing the ensemble
parameter—the inverse variance of the data matrix elements—to fluctuate from one sample to
another according to a certain distribution f , and then averaging over f . We have given
a new compact expression for the distribution of matrix elements in the particular case
where the ensemble parameter has an inverse χ2-distribution. This distribution has appeared
in the literature when modelling the volatility of financial markets and thus it is of interest for
the analysis of large arrays of data. Averaging over this distribution, we are able to express
the spectral statistics of the generalized WL ensembles as an integral over the corresponding
statistics for the standard WL ensembles. This is the key ingredient to solve the model exactly,
for finite N as well as in both the macroscopic and microscopic limits. In our model, we have
full control over the interplay between the deformation parameter γ , the matrix size N and
their respective asymptotic limits.

We have computed exactly several spectral quantities, first deriving a generalized semi-
circle and generalized Marčenko–Pastur density in the macroscopic large-N limit for square
and rectangular data matrices, respectively: in both cases, we obtain an exponential tail.
Second, after discussing in detail the level spacing distribution in WL ensembles and the
applicability of the standard Wigner’s surmise, we determined the microscopic level spacing
distribution for all three β using a new, γ -dependent surmise, which exhibits a good agreement
with numerical simulations.

Our findings are illustrated via an application to financial covariance matrices where we
make a comparison between fits resulting from a χ2- and an inverse χ2-distribution. It would
be very interesting to find further applications, in particular, to time series of other kinds of
data.
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Appendix. Numerical simulations

Since it is not quite trivial to generate matrices with a non-standard Gaussian distribution we
briefly describe the algorithm in detail. We focused on matrices with real elements (β = 1)

as an example, being the most relevant case for applications.
The algorithm used is the following:

(i) Draw a random variable ξ from the inverse-χ2 distribution
f (ξ) = ξ−γ−2 e−1/ξ /
(γ + 1).

(ii) Generate a random M × N matrix X whose entries are normal variables with vanishing
mean and variance σ 2 = 1/(2γ ξ).

(iii) Generate the covariance matrix W̃ = XT X.
(iv) Diagonalize W̃, obtaining its N positive eigenvalues

{
μ

(�)
1 , . . . , μ

(�)
N

}
(� stands for the �th

sample).
(v) Store:

• in the matrix row V�,j the rescaled eigenvalues
{
λ

(�)
j

}
(j = 1, . . . , N)

(
where λ

(�)
j =

Nμ
(�)
j

/∑N
k=1 μ

(�)
k

)
,

• in the matrix row S̃�,j the bare spacings s̃
(�)
j = μ

(�)
j − μ

(�)
j−1 (j = 2, . . . , N).

(vi) Iterate the procedure R times, so that � = 1, . . . , R.
(vii) Plot (i) a normalized histogram of all the entries V�,j (average spectral density) and

(ii) given a certain k between 2 and N, a normalized histogram of all the entries of S̃ in
column k, normalized by the mean (1/R)

∑R
r=1 S̃r,k (individual spacing distribution at

location k).

The plots of the normalized histograms are then compared with the theoretical results for finite
or infinite N, respectively (see figures 3, 4 and 6).
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[29] Marčenko V A and Pastur L A 1967 Math. USSR-Sb 1 457
[30] http://functions.wolfram.com/HypergeometricFunctions/HypergeometricU/06/02/ (2008)
[31] Dorogovtsev S N and Mendes J F F 2003 Evolution of Networks: From Biological Nets to the Internet and

WWW (Oxford: Oxford University Press)
[32] Plerou V et al 2002 Phys. Rev. E 65 066126
[33] Dumitriu I and Edelman A 2002 J. Math. Phys. 43 5830
[34] Bruus H and Anglés d’Auriac J-C 1997 Phys. Rev. B 55 9142
[35] Müller M et al 2006 Phys. Rev. E 74 041119
[36] Bertuola A C et al 2005 Phys. Rev. E 71 036117
[37] de Carvalho J X, Jalan S and Hussein M S 2008 arXiv:0812.5052v1 [cond-mat.dis-nn]
[38] Burda Z and Jurkiewicz J 2004 Physica A 344 67
[39] Wilcox D and Gebbie T 2008 Int. J. Theor. Appl. Fin. 11 739
[40] Laloux L, Cizeau P, Bouchaud J-P and Potters M 1999 Phys. Rev. Lett. 83 1467
[41] Van der Straeten E and Beck C 2009 arXiv:0901.2271v1 [physics.data-an]

21

http://dx.doi.org/10.1016/j.physa.2005.07.019
http://dx.doi.org/10.1103/PhysRevE.72.066114
http://dx.doi.org/10.1103/PhysRevE.71.055101
http://dx.doi.org/10.1016/S0378-4371(03)00019-0
http://dx.doi.org/10.1016/j.physd.2004.01.007
http://dx.doi.org/10.1016/j.physd.2004.01.020
http://dx.doi.org/10.1209/epl/i2003-00498-4
http://dx.doi.org/10.1103/PhysRevE.65.035106
http://dx.doi.org/10.1103/PhysRevE.68.032102
http://dx.doi.org/10.1103/PhysRevLett.91.084503
http://dx.doi.org/10.1103/PhysRevE.68.046122
http://dx.doi.org/10.1103/PhysRevE.59.1489
http://dx.doi.org/10.1103/PhysRevE.60.5287
http://dx.doi.org/10.1088/0305-4470/39/40/003
http://dx.doi.org/10.1140/epjb/e2006-00038-8
http://dx.doi.org/10.1103/PhysRevE.72.056133
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1016/j.physa.2003.09.025
http://dx.doi.org/10.1103/PhysRevE.71.016131
http://dx.doi.org/10.1103/PhysRevE.77.046202
http://dx.doi.org/10.1016/j.physd.2004.01.041
http://dx.doi.org/10.1103/PhysRevE.72.026304
http://dx.doi.org/10.1016/S0550-3213(96)00713-4
http://dx.doi.org/10.1103/PhysRevLett.81.248
http://dx.doi.org/10.1016/S0550-3213(00)00448-X
http://dx.doi.org/10.1007/s00220-003-0960-z
http://dx.doi.org/10.1007/s10955-007-9325-x
http://dx.doi.org/10.1007/s00365-005-0611-z
http://dx.doi.org/10.1070/SM1967v001n04ABEH001994
http://functions.wolfram.com/HypergeometricFunctions/HypergeometricU/06/02/
http://dx.doi.org/10.1103/PhysRevE.65.066126
http://dx.doi.org/10.1063/1.1507823
http://dx.doi.org/10.1103/PhysRevB.55.9142
http://dx.doi.org/10.1103/PhysRevE.74.041119
http://dx.doi.org/10.1103/PhysRevE.71.036117
http://www.arxiv.org/abs/0812.5052v1
http://dx.doi.org/10.1016/j.physa.2004.06.089
http://dx.doi.org/10.1142/S0219024908005020
http://dx.doi.org/10.1103/PhysRevLett.83.1467
http://www.arxiv.org/abs/0901.2271v1

	1. Introduction
	2. Superstatistical Wishart--Laguerre ensembles
	2.1. The three superstatistical classes
	2.2. Building the superstatistical ensembles

	3. Generalization of WL with exponential tails
	3.1. Universality

	4. The macroscopic spectral density
	4.1. Generalized semi-circle for law c = 1
	4.2. Generalized Marcenko--Pastur law for c1

	5. Level spacing from a Wigner surmise
	5.1. A Wigner surmise in WL?
	5.2. Level spacing for our generalized model

	6. Applications and discussion
	7. Conclusions
	Acknowledgments
	Appendix. Numerical simulations
	References

